探花系列在线无码免费|麻豆精品无码91超碰人人|日韩成人性爱电影一区二|日本成人强奸A片|91午夜精品无码秘18久久久|日本黄色大片无码|日美女黄片免费永久一区二区草|女优av天堂激情嘿咻网|日韩成人免费三及片视频|高清成人无码A片

正島電器

您目前所在的位置:除濕機_解決方案_正島電器
瀏覽:7480 液體除濕空調(diào)除濕器性能的實驗研究 [2007-02-08] 來源:正島電器技術(shù)應用開發(fā)部

摘要:本文以實際液體除濕空調(diào)系統(tǒng)為對象,進行實驗研究,改變系統(tǒng)中除濕器入口空氣及溶液的參數(shù),得出空氣出口溫、濕度隨之變化的狀況。并與理論模擬計算值比較,獲得實驗值和理論值有相同的變化趨勢的試驗數(shù)據(jù)。由此得出在諸多的入口參數(shù)中,溶液的溫度和流量的變化對空氣出口溫、濕度影響較大,空氣的出口溫度實驗值偏小于理論值,空氣的出口濕度實驗值偏大于理論值。這將對液體除濕空調(diào)系統(tǒng)的性能分析和設(shè)計提供幫助。

關(guān)鍵詞:液體除濕空調(diào)系統(tǒng) 除濕器 實驗 性能分析

液體除濕空調(diào)系統(tǒng)對驅(qū)動熱源的要求較低,一般的工業(yè)余熱、廢熱以及地熱、太陽能能可再生的低品位能源均可利用,應用研究具有廣闊的前景。

除濕器是液體除濕空調(diào)系統(tǒng)的核心裝置,常用的有“絕熱型除濕器” 和“內(nèi)冷式除濕器”兩種。對除濕器的數(shù)學分析,R.E.Treybalt用“微元控制體模型”方法,將絕熱型除濕器沿高度方向劃分為微元控制體,在穩(wěn)定除濕狀態(tài)下,推導出傳熱傳質(zhì)的控制微分方程[1],H.M.Factor、G.Grossman、P.Gandhidasan等人在數(shù)值算法上作了一些改進,使其能夠較好地求解發(fā)生在絕熱型除濕器中的傳熱傳質(zhì)過程[2] [3] [4]。由于除濕過程是放熱過程,為了提高除濕效率,除濕過程需進行冷卻,使除濕溶液保持較低的蒸氣壓力,即采用內(nèi)冷式除濕器,該技術(shù)也有眾多學者進行了研究,認為除濕器內(nèi)除濕溶液以降膜的形式與被處理空氣接觸,進行傳熱傳質(zhì)[5][6][7]。實際上,除濕器內(nèi)的傳熱傳質(zhì)過程是一個很復雜的過程,除濕的性能受多因素的影響,而在數(shù)值的模擬過程中,往往忽略了這些影響的因素。因此,除濕器的實際效果和理論模擬會有一定的差異。隨著液體除濕空調(diào)趨于實用,分析實際運行和理論計算間工作參數(shù)的差異,對今后的系統(tǒng)設(shè)計和運行調(diào)整會有幫助。本文就除濕空調(diào)系統(tǒng)中的除濕器的性能進行實驗,并將測定的數(shù)據(jù)與理論計算值進行比較。

1 除濕器的數(shù)學模型

除濕器的數(shù)學模型,通常采用雙膜理論進行分析。本系統(tǒng)采用的裝置為絕熱型填料塔除濕器,溶液從填料上方噴淋,空氣從填料下方進入,兩者在填料間進行逆向流動的傳熱傳質(zhì).

2 液體除濕空調(diào)實驗系統(tǒng)及除濕器試驗方法

空氣除濕空調(diào)實驗系統(tǒng)由除濕器、再生器、加濕器和溶液冷卻器等主體部件構(gòu)成。各設(shè)備按溶液與空氣流程依次布置,如圖2所示。其中除濕器結(jié)構(gòu)形式為無冷卻逆流式填料塔。填料塔直徑為0.3m,填料的比表面積350 m2/m3;填料的平均當量直徑為0.01 m;填料高度1.0 m。液體除濕劑采用LiCl溶液。

除濕器的實驗研究主要是在空氣與溶液的流量穩(wěn)定時,調(diào)節(jié)空氣與溶液的入口工況,研究其出口參數(shù)——空氣的出口溫度與濕度和理論模擬值的接近程度和變化趨勢。本實驗為了實驗結(jié)果具有可比性,各工況參數(shù)設(shè)有參照值,具體各值為:

1 環(huán)境溫度35 ℃,大氣壓力1.01×105 Pa;

2 溶液的入口濃度40 %,溶液的入口溫度30℃,溶液的入口流量920 L/h;

3 空氣的入口溫度35 ℃,空氣的入口濕度20g/kgDA,空氣的入口流量390 m3/h;

實驗的主要實驗內(nèi)容是,分別改變?nèi)芤喝肟诘臏囟?、濃度和流量,以及被處理空氣的入口溫度和濕度條件下,觀察除濕器出口空氣的溫、濕度變化,并和理論值進行比較。


?

3 實驗結(jié)果及討論

實驗結(jié)果經(jīng)過整理,填料塔除濕器當某一參數(shù)改變時,被處理空氣的溫、濕度的變化趨勢與實際結(jié)果同模型計算結(jié)果有著相同的變化趨勢,實驗值和理論值吻合較好。

a.空氣除濕后的出口溫度在各工況下都同溶液的入口溫度非常接近,除濕后空氣的濕度也與溶液的溫度成正比例關(guān)系,這說明在實際運行中被除濕處理空氣的出口狀態(tài)受溶液入口溫度的影響具有決定性,保持在除濕過程中溶液的溫度將有利于空氣的除濕效果;

b.在溶液流量比較小時,空氣出口溫度與濕度明顯升高,一是因為溶液流量過小,不能保證填料充分潤濕,傳熱傳質(zhì)面積減小,除濕性能下降;二是溶液流量過小,溶液熱容量減小,溶液吸濕時產(chǎn)生的潛熱使溶液的溫度上升,降低了除濕劑的吸濕能力。在本文所研究的實驗條件下,如圖5所示,溶液流量為700L/h時,是除濕性能顯著改變的轉(zhuǎn)折點。由此可見,除濕器要有良好的吸濕性能,一定要有合適的溶液流量,或者說要有合適的空氣溶液流量比;

c.溶液的入口濃度對空氣溫度變化不大,而影響著空氣出口的濕度,空氣的出口濕度影響著把空氣絕熱加濕后可達的空氣狀態(tài)。當空調(diào)送風溫度為25℃時,溶液的濃度可以在32%,當送風溫度要求為20℃時,溶液的濃度必須提高到40%。

d.進口空氣所處的熱力狀態(tài)對空氣出口參數(shù)的影響較小。

4 結(jié)論

a.實驗值和理論值有相同的變化趨勢,雙膜理論用于除濕塔熱力分析可行。

b.在除濕過程中,,溶液的入口參數(shù)對處理后空氣溫、濕度的影響大于空氣的入口參數(shù)。

c.實驗值和理論值之間存在偏差,空氣的出口溫度實驗值偏小于理論值,空氣的出口濕度實驗值偏大于理論值。

參考文獻

1. R. E. Treybal. Adiabatic gas absorption and stripping in packed towers. Industrial and Engineering Chemistry. 1969: 61~68.

2. H. M. Factor and Gershon Grossman. A packed bed dehumidifier/regenerator for solar air conditioning with liquid desiccants. Solar Energy, 1980: 541-550.

3. P. Oandhidasan, C. F. Kettleborough and M. Rifat Ullah. Calculation of heat and mass transfer coefficients in a packed tower operating with a desiccant-air contact system. Solar Energy Engineering, ASME, 1986: 123-127.

4. P. Gandhidasan, U. Rifat Ullah and C. F. Kettleborough. Analysis of heat and mass transfer between a desiccant-air system in a packet tower. Journal of Solar Energy Engineering, 1978: 89-93.

5. H. L.Goff, A.Ramadance. Modeling the coupled heat and mass transfer in a falling film. Heat Transfer. 1986: 1971-1976.

6. A.I.Zografos, C.Petroff. A liquid desiccant dehumidifier performance model. Transactions of ASHRAE.1991: 650-656.

7. G.Gmssman. Analysis of diffusion-thermo effects in film absorption. Heat Transfer.1986: 1977-1982.


?

歡迎您提出寶貴的意見和建議,您提交的任何信息,都將由我們專人負責處理。如果不能解決您的疑問,請您聯(lián)系我們

  • 留言框
  • 您的單位:*請輸入單位名稱
  • 您的姓名:*請輸入姓名
  • 聯(lián)系電話:*請輸入聯(lián)系電話
  • 詳細地址:
  • 常用郵箱:請輸入郵箱